Volume 5, Issue 3, September 2019, Page: 27-33
Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles
Akanksha Bhardwaj, Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab, India
Suram Singh Verma, Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab, India
Received: Sep. 26, 2019;       Accepted: Oct. 21, 2019;       Published: Oct. 25, 2019
DOI: 10.11648/j.bs.20190503.12      View  27      Downloads  10
Abstract
In the era of flexible and foldable devices, liquid metals emerge as a champion because they are being liquid at or near room temperature in addition to having high electrical and thermal conductivities. Plasmonic resonance occurs when conduction band electrons on metal nanoparticle surface collectively oscillates with same frequency as that irradiated light. This plasmonic resonance has attracted great attention because of large electromagnetic field enhancements near metal nanoparticle and the regulating resonance wavelength with change in material, size, shape and surrounding medium of metallic nanoparticle. Incorporation of liquid metal nanoparticles in plasmonics provides unique properties towards sensing (heart rate monitors etc.) which can become wearable. So, developing liquid metal based low-cost and large-scale plasmonic nanostructures may provide more optical efficiencies, fast kinetics, low temperature processing, versatility, easy embedding in structures and stretchy devices. Present work focuses on literature review highlighting the study of optical properties (absorption and scattering efficiencies, LSPR tunability, Figure of Merit (FOM) and Refractive Index Sensitivity (RIS)) of noble metal-liquid metal nanostructures and future scope of the field. Simulations can be performed on the basis of Mie Theory for spherical nanoparticles and by DDA/FDTD method for non-spherical particles or arrays. The results can help to optimize the plasmonic nanostructures of suitable material, size and shape according to the need of application in particular region of EM spectrum.
Keywords
Noble Metals, Liquid Metals, Plasmonics, LSPR, Nanoparticles
To cite this article
Akanksha Bhardwaj, Suram Singh Verma, Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles, Biomedical Sciences. Vol. 5, No. 3, 2019, pp. 27-33. doi: 10.11648/j.bs.20190503.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
I. Freestone, N. Meeks, M. Sax, C. Higgitt, Gold bulletin. 40 (4), 270-277 (2007).
[2]
M. Faraday, X. 147, 145-181 (1857).
[3]
G. Mie, Ann. Phys. 25, 377 (1908).
[4]
S. Link, M. B. Mohamed, M. A. El-Sayed, J. Phys. Chem. B. 103, 3073-3077 (1999).
[5]
S. A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, Springer US 2007.
[6]
J. S. Sekhon, S. S. Verma, Plasmonics. 6 (2), 311-317 (2011).
[7]
S. Y. Shim, D. K. Lim, J. M. Nam, Nanomedicine. 3, 215–232 (2008).
[8]
L. Wu, H. S. Chu, W. S. Koh, E. P. Li, Optics express. 18 (14), 14395-14400 (2010).
[9]
G. Han, P. Ghosh, V. M. Rotello, Nanomedicine. 2, 113–123 (2007).
[10]
V. Zharov, E. Galanzha, E. Shashkov, N. Khlebtsov, V. Tuchin, Opt. Lett. 31, 3623–3625 (2006).
[11]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, N. J. Halas, ACS nano. 8 (1), 834-840 (2013).
[12]
P. C. Wu, T. H. Kim, A. S. Brown, M. Losurdo, G. Bruno, H. O. Everitt, Applied Physics Letters. 90 (10), 103119 (2007).
[13]
J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, F. Moreno, The Journal of Physical Chemistry C. 117 (38), 19606-19615 (2013).
[14]
S. Hayashi, T. Okamoto, Journal of Physics D: Applied Physics. 45 (43), 433001 (2012).
[15]
C. Noguez, The Journal of Physical Chemistry C. 111 (10), 3806-3819 (2007).
[16]
K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B. 107 (3) 668-677 (2003).
[17]
L. Gao, Y. Zhang, V. Malyarchuk, L. Jia, K. I. Jang, R. C. Webb, D. Shah, (2014). Nature communications. 5, 4938.
[18]
M. A. H. Khondoker, D. Sameoto, Smart Materials and Structures. 25 (9), 093001 (2016).
[19]
T. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. De Castro, D. Esrafilzadeh, S. J. Barrow, K. Kalantar-Zadeh, Chemical Society Reviews. 47 (11), 4073-4111 (2018).
[20]
W. B. Jensen, Journal of Chemical Education. 80 (8), 952 (2003).
[21]
D. R. Lide, (Ed.). CRC handbook of chemistry and physics (Vol. 85). CRC press 2004.
[22]
V. Heine, Journal of Physics C: Solid State Physics. 1 (1), 222 (1968).
[23]
M. Zhang, S. Yao, W. Rao, J. Liu, Materials Science and Engineering: R: Reports. 138, 1-35 (2019).
[24]
Q. Wang, Y. Yu, K. Pan, J. Liu, IEEE Transactions on Biomedical Engineering. 61 (7), 2161-2166 (2014).
[25]
B. F. Soares, F. Jonsson, N. I. Zheludev, Physical review letters. 98 (15), 153905 (2007).
[26]
K. R. Nemade, S. A. Waghuley, Applied Nanoscience. 7 (8), 753-758 (2017).
[27]
P. Laurent, P. Lemonde, E. Simon, G. Santarelli, A. Clairon, N. Dimarcq, C. Salomon, Eur. Phys. J. D. 3 (3), 201-204 (1998).
[28]
E. A. Daza, S. K. Misra, A. S. Schwartz-Duval, A. Ohoka, C. Miller, D. Pan, ACS applied materials & interfaces. 8 (40), 26600-26612 (2016).
[29]
R. G. Chaudhuri, S. Paria, Chemical reviews. 112 (4), 2373-2433 (2011).
[30]
P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, A. S. Brown, J. Phys. Chem. C. 115 (28), 13571-13576 (2011).
[31]
I. D. Tevis, L. B. Newcomb, M. Thuo, Langmuir. 30 (47), 14308-14313 (2014).
[32]
T. Hirano, S. Nakakura, F. G. Rinaldi, E. Tanabe, W. N. Wang, T. Ogi, Advanced Powder Technology. 29 (10), 2512-2520 (2018).
[33]
F. Yang, Y. Xu, M. Gu, S. Zhou, Y. Wang, K. Lu, Z. Wu, J. Mater. Chem. A, 6 (36), 17688-17697 (2018).
[34]
M. Zhang, J. S. Yun, Q. Ma, J. Zheng, C. F. J. Lau, X. Deng, S. Huang, ACS Energy Lett. 2 (2), 438-444 (2017).
[35]
P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, G. Videen, Nano Lett. 11 (9), 3531-3537 (2011).
[36]
Y. Gutiérrez, M. Losurdo, P. García‐Fernández, M. Sainz de la Maza, F. González, A. S. Brown, F. Moreno, Advanced Optical Materials. 7 (13) 1900307 (2019).
[37]
L. Yang, X. Zhao, S. Xu, Y. Lu, H. Chang, J. Liu, Science China Technological Sciences. (2019).
[38]
P. Reineck, Y. Lin, B. C. Gibson, M. D. Dickey, A. D. Greentree, I. S. Maksymov, (2019). Scientific reports. 9 (1), 5345.
[39]
S. Y. Tang, D. R. Mitchell, Q. Zhao, D. Yuan, G. Yun, Y. Zhang, W. Li, Matter. 1 (1), 192-204 (2019).
[40]
J. Wang, S. Liu, A. Nahata, Optics express. 20 (11), 12119-12126 (2012).
[41]
O. Peña-Rodríguez, P. P. González Pérez, U. Pal, International Journal of Spectroscopy. vol. 2011, Article ID 583743, 10 pages, (2011).
[42]
M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Meas. Sci. Technol. 11 (1827), (2000).
[43]
P. Monk, Finite element methods for Maxwell's equations. Oxford University Press (2003).
[44]
A. Buffa, M. Costabel, C. Schwab, Numerische Mathematik. 92 (4), 679-710 (2002).
[45]
B. T. Draine, P. J. Flatau, JOSA A. 11 (4), 1491-1499 (1994).
[46]
S. D. Gedney, Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool, 6 (1), 1-250 (2011).
[47]
B. T. Draine, P. J. Flatau, JOSA A. 25 (11), 2693-2703 (2008).
[48]
J. J. Goodman, B. T. Draine, P. J. Flatau, Optics Letters. 16 (15), 1198-1200 (1991).
[49]
K. Yee, IEEE Transactions on antennas and propagation. 14 (3), 302-307 (1966).
[50]
M. N. Sadiku, Numerical techniques in electromagnetics. CRC press 1992.
[51]
K. S. Kunz, R. J. Luebbers, The finite difference time domain method for electromagnetics. CRC press 1993.
[52]
A. Taflove, Advances in computational electromagnetics. Artech House, Norwood, MA 1998.
Browse journals by subject